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Abstract

One of the most celebrated problems in dyadic harmonic analysis is the pointwise
convergence of the Fejér (or (C, 1)) means of functions on unbounded Vilenkin groups. In
1999 the author proved that if f'e L”(G,,), where p> 1, then o,/ —>f almost everywhere. This
was the very first “positive” result with respect to the a.e. convergence of the Fejér means of
functions on unbounded Vilenkin groups. One of the main difficulties is that the sequence of
the L' norm of the Fejér kernels is not bounded. This is a sharp contrast between the
unbounded and the bounded Vilenkin systems. The aim of this paper is to discuss the L! case.
We prove for feL!'(G,) that the relation ay,f —f holds a.e. (M, is the nth generalized
power).
© 2003 Elsevier Inc. All rights reserved.

MSC: 42C10

Keywords: (C,1) means; Vilenkin series; A.e. convergence

" Research supported by the Hungarian “Miivel6dési és Kozoktatasi Minisztérium™, Grant FKFP
0182/2000, by the Bolyai Fellowship of the Hungarian Academy of Sciences and by the Hungarian
National Foundation for Scientific Research (OTKA), Grant M 36511/2001.

“Fax: +36-42-402-485.

E-mail address: gatgy@zeus.nyf.hu.

0021-9045/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0021-9045(03)00075-3



26 G. Gat | Journal of Approximation Theory 124 (2003) 25-43
1. Introduction

One of the most celebrated problems in dyadic harmonic analysis is the pointwise
convergence of the Fejér (or (C,1)) means of functions on unbounded Vilenkin
groups.

Fine [4] proved every Walsh-Fourier series (in the Walsh case m; = 2 for all jeN)
is a.e. (C,o) summable for o>1. His argument is an adaptation of the older
trigonometric analogue due to Marcinkiewicz [9]. Schipp [12] gave a simpler proof
for the case o = 1, i.e. o,f —f a.e. (feL'(G,)). He proved that ¢* is of weak type
(L',L"). That ¢* is bounded from H' to L' was discovered by Fujii [5].

The theorem of Schipp are generalized to the p-series fields (im; = p for all je N) by
Taibleson [15] and later to bounded Vilenkin systems by Pal and Simon [10].

The methods known in the trigonometric or in the Walsh, bounded Vilenkin case
are not powerful enough. One of the main problems is that the proofs on the
bounded Vilenkin groups (or in the trigonometric case) heavily use the fact that the
L' norm of the Fejér kernels are uniformly bounded. This is not the case if the group
G, is an unbounded one [11]. From this it follows that the original theorem of Fejér
does not hold on unbounded Vilenkin groups. Namely, Price proved [11] that for an
arbitrary sequence m (sup, m, = oo ) and a€ G, there exists a function /" continuous
on G, and o,f(a) does not converge to f(a). Moreover, he proved [11] that if

l"fhﬂa o0, then there exist a function f continuous on G,, whose Fourier series are
n

not (C, 1) summable on a set S< G, which is non-denumerable. That is, only, a.e.
convergence can be stated for unbounded Vilenkin groups. The almost everywhere
convergence of the full partial sums for L”,p>1, is known in the bounded case [6]
but not in the unbounded case. On the other hand, mean convergence of the full
partial sums for L7, p>1, is known for the unbounded case. Namely, in 1999 Gat [7]
proved that if f'e L?(G,,), where p> 1, then o,/ — f almost everywhere. This was the
very first ““positive” result with respect to the a.e. convergence of the Fejér means of
functions on unbounded Vilenkin groups.

The aim of this paper is to give a partial answer for L' case. We discuss a partial
sequence of the sequence of the Fejér means. Namely, we prove. Let feL'(G,,).
Then we have g, f —f almost everywhere.

For a more complete references we mention the paper of Zheng [17], where the
pointwise convergence of Cesaro means of L' functions is proved on the setting of
local fields. For more general systems see paper [8].

First we give a brief introduction to the theory of Vilenkin systems. These
orthonormal systems were introduced by Vilenkin in 1947 (see e.g. [1,16]) as follows.

Let m = (mg, keN)(N:={0,1,...}) be a sequence of integers each of them not
less than 2. Let Z,, denote the discrete cyclic group of order my. That is, Z,, can be
represented by the set {0, 1, ..., m; — 1}, with the group operation mod my addition.
Since the groups is discrete, then every subset is open. The normalized Haar measure
on Z,,, 1y is defined by p, ({j}) = 1/my (je{0,1,...,my —1}). Let

o0
G, = k>:<0 Zy, .
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Then every xeG,, can be represented by a sequence x = (x;, ieN), where
xi€Zy, (ieN). The group operation on G, (denoted by +) is the coordinatewise
addition (the inverse operation is denoted by —), the measure (denoted by u), which
is the normalized Haar measure, and the topology are the product measure and
topology. Consequently, G,, is a compact Abelian group. If sup,,.y #, < oo, then we
call G;, a bounded Vilenkin group. If the generating sequence m is not bounded, then
G,, 1s said to be an unbounded Vilenkin group.

The Vilenkin group metrizable in the following way:

o0

|Xi — il
d(x,y) = — (x,yeGp).
() ,;Mm (x,7€Gy)
The topology induced by this metric, the product topology, and the topology given
by below are the same. A base for the neighborhoods of G,, can be given by the
intervals:

Iy(x) = Gy, IL(x)={y=0,ieN)eG, :y; =x; for i<n}

for xe G,,, neP = N\{0}. Let 0 = (0,ieN) e G,, denote the nullelement of G,,, I, :
=1,(0) (neN).

Furthermore, let L7(G;,) (1<p< o0) denote the usual Lebesgue spaces (|||, the
corresponding norms) on G,,, o7, the ¢ algebra generated by the sets I,(x) (xe G,,),
and E, the conditional expectation operator with respect to &, (neN) (E_f ==
0(feLh).

The concept of the maximal Hardy space [13] H!(G,,) is defined by the maximal
function f* = sup, |E,f |(f€L'(G,)), saying that f belongs to the Hardy space
H'(G,) if f*eL'(G,). H'(G,,) is a Banach space with the norm

1A e = 11771

Let X and Y be either H'(G,,) or L?(G,,) for some 1 <p< oo with norms ||.||, and
[|-]ly.- We say that operator T is of type (Y, X) if there exist an absolute constant
C>0 for which || Tf||y < C|| ]|y for all f € X. T is of weak type (L', L!) if there exist
an absolute constant C>0 for which u(7f>1)<C||f]|;/4 for all >0 and
feL'(G,,). It is known that the operator which maps function f to the maximal
function f* is of weak type (L', L"), and of type (L7, L”) for all 1 <p< oo (see e.g.
[2,6)).

Let My = 1, M1 = m, M, (neN) be the so-called generalized powers. Then each
natural number 7 can be uniquely expressed as

n= Z nM; (l’l,’G{O, 1, e, M — 1},i€N),
i=0

where only a finite number of ;s differ from zero. The generalized Rademacher
functions are defined as

rp(X) = exp(Zmﬁ) (x€Gp,neN,1:=v—1).

my
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0 if x,#0,

It is known that 37" # (x) = {m o —0

(xe Gp,neN). The nth Vilenkin

function is

8

W, = r;'-f (neN).
J

Il
o

The system ¢y == (,, : neN) is called a Vilenkin system. Each , is a character of G,,,
and all the characters of G, are of this form. Define the m-adic addition as

o0

k@n =" (kj+nj(modm;))M; (k,neN).

Jj=0

Then7 lpk@n = lﬁkwm l//n(x +y) = lﬁn(x)‘//n(y)) lpn(_x) = l//Fl(x)7 |‘//n| = 1(k7ne N7
X, € Gy).

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
kernels, the Fejér means, and the Fejér kernels with respect to the Vilenkin system i/
as follows

- /G fi

n—1
Sﬂf = Z ff(k)‘//ka
k=0

Dy(y,X) = Dy = x) = Y Y0P (x),

Ki(vx) = Koy =) = 037 Dyl =),
k=1

(neP, y,x€Gp, A0) / £.Sof = Do =0, feL'(Gy).

It is well-known that

y) = / S(X)Daly — x) d,
V) = /G S0y — x) dx

( GP yEGnu fEL ( m))
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It is also well-known that

b [ M i xed,(0),
M"(x)_{o if x¢1,(0),

Su.f(x) = M, f=Ef(x) (feL'(G,),neN).
)

In(x

Moreover [11] for neN,

mj—1

D, :‘/’ni Dy, Y 1.
Jj=0

i=m;—n;

That is, for ze I\[+1(teN)

t—1 m;—1
D,(z) =y,(2) (Z niM; + M, Z r’t(z)>

j=0 i=m;—n,

2. The theorem

The aim of this paper is to give a partial answer for L' case. We discuss a partial
sequence of the sequence of the Fejér means. Namely, we prove:

Theorem 2.1. Let f e L'(G,,). Then we have oy S —f almost everywhere.

Nevertheless, this is only a partial answer. We do not know what to say for the
whole sequence of the (C, 1) means of integrable functions. On the other hand, we
feel that the L7 result [6] and Theorem 2.1 qualify us for giving the conjecture that
the theorem of Lebesgue (0,/ = f a.e.) holds on unbounded Vilenkin groups, too.

In order to prove Theorem 2.1 we need several lemmas. The first one is the so-
called Calderon—Zygmund decomposition lemma [3] on unbounded Vilenkin groups
(for the proof see e.g. [14]). For ze G,,, keN, je{0, ...,m; — 1} we use the notation

Ik(zvj) = 1k+l (ZO7 "'7Zk717j)’

Lemma 2.2. Let feL'(G,,), and 1.>||f||,>0 arbitrary. Then the function f can be
decomposed in the following form:

F=h+d f bl <Ch Al <CISIL
=1

B;
suppfic | Ty(2,1) = J;, /G fdu=0 (jeP),

IZO(/‘
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and for

1/11s
;L )

F=JJ, nF)<cC
jeP

Moreover, the sets J; are disjoint (jeP).

The second one is as follows. For an integrable function f* we define the following
operator:

Hf () = sup gen| M / S Wmd"-

Y412V A-11a 00V a—2%4—1)

Lemma 2.3. The operator H, is of type (L*, L?).

Proof. Suppose that a,b,z€Z,, where 2<peN. If 2|p, then cot(n’%) =0, and
cot(n2) = —cot(nt=) (ze{l,...,p/2 = 1}). If 24p, then cot(n %) = —cot(nt7*) for
ze{l,...,(p = 1)/2}. This gives

p—1
Z cot(nz> = 0.
z=1 p

Let a,b,zeZ, be different. Then by the above we have

Vi <z—a> (b—a)
Z cot| = —cot|(m ,
z=0 P
p—1
z—b a—>b
and —cot|m =cot| = .
Y, —eo(x57) =i (45)

z#ab
z=0

z#ab

The known equalities
( Za) ( zb)
1+cot|= cot|
p P
(=5 ) (e (-55) e (+57))
=cot(m cot| —cot|
p p p

: L L cot(mr)
Yot
l —exp(2int) 2 2

and
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give

p—1

1
Z 1 — exp( 2171“ “)( —exp(2in :;b)>

=0
7;réa,b

z#_a,b
1 —b il - —b
:—cot(na >+1 Z cot(nz )—cot(nz )
4 P g P
z#ab

<Ccot2<na_b> +Ccot<na;b)‘

p
<Csin2<na_b>.
p

Consequently, for an arbitrary function g: Z,—C we have

2

124184 1
S22 9@ T
P =Ire= exp(2ni(z — a)/p)
a#z
1|l ed 2l 1 z—a 1 z—b
<— g(a)g(b) (——i——cot( )) (———cot (n >)
p3 a=0 a=0 ; 2 2 2 2
a#b z#ab
1L L z—a\|’
+ = lg(a)] —+—cot<n )
P = Zo: 202 p
z#a
C p—1 p-1 ) A C -1 5 p—1 pz
<— g(a)|lg(b)|sin~ (n >+— g(a
P ;I (@)|lg(b)] P u:ol (a)| 2 ar
b+#a z#a
s 5
<C-=) lg(a)
pa:()

The last inequality is followed by the Cauchy—Buniakovskii inequality:

1; a)llg(a+ )<= <Z|g >£<Z|ga+1 ) pZ

’E\'—‘
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Define for 1<A4eN the operator H; 4 in the following way:

: , 1
Hf ) = | Mot SO
o zys Aa00spaaxa) - VA*I(,V - x)
XA-1#V4-1
(feL',yeG,). By the inequality above we have
1 mA,]71 2
N )
A-1 Ya4-1=0
1 my_1—1 1 1 2
= Z E4f (v, ---7J7A727XA71)1_—(_)
Ma—1 =25 Ma-1 o, 57, ra-1(y —x
C my_1—1 5
< E ey VA-2,X4-1)|"-
o YZ;O| af (V05 -3 Va2, X4-1)]
X4-1
This immediately gives
moy—1 my_1—1 5 5 5
| B Z S ESGos ooy va ) = CUESIB<CISIE
0=0 Ya-1=0

That is, we have proved that the operator H; 4 is of type (L?, L?). Since

A-1 — X4-1
cot <ny—> dx =0,
) my—
UV/H#M?1 L4,y 4-2,X4-1)

v [ B/ () (3 + eor (w2250 ay

XA_1 AV A-1 L4y, ya-2Xa-1) my—i
< ().
Consequently,
2
[H ]
2
sup H17J
AeN 2
2
sup Hya(Eaf — Earf) + Cf”
AeN )
2
<ClIf I+ ¢ sup Hy 4(Esf — Eq_if)
N 2
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2 - 2
<SR+ CYNHAESS = Eamrf )l
A=1

<CfIG+ CY_NEAf — Eanrfll3
A=1

<Cl|f|l5-

This completes the proof of Lemma 2.3. O
Lemma 2.4. The operator H, is of weak type (L', L").

Proof. Let f e L'(G,,) such that

B
/ fdu=0, suppfc|JL(z)) =1,
GH'I

Jj=u
where Ii(z,j) = Ir+1(zoy .oy Zk—1,7), 2Z€ Gy, and je{o,o0+1,...,p}<={0,1, ...,my —
1}. Let y == | (¢ + B)/2 |. Define the distance of j,ke{0,1,...,my — 1} = Z,,, as
. e my
' AS if 7 —kl<=
p(j,k) = . e my
my — | j— k| 1f\]—k|>7.

In other words, Z,, is considered as a circle. Define the set 6/ in the following way:
If p— o+ 1=my /6, then 6[a, ] == {0, ...,my; — 1},

61 = U Ii(z,)) = Ir(2).

Jje6ap]

On the other hand, if f — o+ [ <my /6, then 6o, f] = {je€Zy, : p(j,7)<3(f —a+
D},

6l = U Li(z,)).

Jje6[o.p]
It is obvious that u(I)<u(6I)<6u(I). Denote by e; € G, the sequence whose kth
coordinate is 1, and the rest are zeros (keN). For xel, and ye ;.7 e I(2.))
62,
we give an upper bound for
‘ 1 1
L=y —x)  1—r(y—ver)|

and later for the sum of them. The definition of p gives

1 o 1 <C mj.
Sin( )] Sin (22 S p (v, x)’
K
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Since
! ! v ! cot(nz)
1 —exp(2miz) 2 2 ’
then we have
’ 1 1
l_rky 1 re(y —vex)
cos(m e sk)  cos(mit)
sin(r y" x" sin(n LTy

my
s1n( nd)

in(m 225 sin(n4o)
(B—o+1)/my
|sin (7 2~ "‘)sm( y";"")|
(p—o+ 1)my
PV Xie)p(Vis 7)
<C( —o+ )mk'
p*(Vk,7)
The last inequality is implied by the definition of p, yr¢6[e,f], and
Pk, xk) = p(is7) — (B — o+ 1) =5 p(yk, 7). Consequently, we have

1 1 1

mi e {01} ‘1 —n(y=x)  1T—r(y—yer)
Vi ¢ 6[o,f]

1
S 2s

N

C

<C

ﬁ—a+1<c

<C s
Deprest 3oy P70k7)

In the sequel, we consider

Hy4f (y) = MA—I/ f(x) ! dx|,

) ) 1 - rq4—1 — X
a1 %4 Li(yo,...y4-2,X4-1) (y )

where ye G,,,\61. This means, that either there exists an i<k — 1, such that y; #z;, or

Y0 = 20, ..., Vi1 = Zk—1, and yr ¢ 6[x, f].
The case 4>k + 1. In this case

U Li0o o va2xa) S Lici (o, ooy yas2) Sl (o, - 90)-
XA—1 FYa-1
If there exists a i<k — I, such that y;#z;, then the sets Ii(zo,...,zx—1) DI, and
Liv1(vo, .., yi) are disjoint. Consequently, H; 4f(y) =0
On the other hand, if yo = zo, ..., yk—1 = zk—1, and yr ¢6[a, f], then the intervals

Liee1(vo, -, yik) = Ii1 (20, -, 21, Y1), and T = Uf:a li (20, - 2i-1,) are disjoint.
Anyway, we have Hy 4f(y) =
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The case A<k + 1. Thatis, 4 — 1<k — 1. If
IA(J’Ov ~~~ayA—2,X,4_1)ﬁI;£0,

then the condition yg = zg, ..., V42 = z4_2,xX4-1 = z4_ must be fulfilled. It follows
that I<Ii(zo, ..., zk—1) < La(Vo, -y Ya—2,X4-1). Thus, Ly(¥o, ..., Ya—2,x4-1)nI =1I.
Consequently, the function r4_;(y — x) is constant as x ranges over I. This gives

Hy4f (y) =| M4y /If(x)#dx

1(y —x)
1

=\ M,_ (x) d
‘ 4 ll—VAfl(y—ZA—leAfl)/lf(X) ¥

Consequently, H; 4f(y) may differ from zero only in the case 4 = k + 1. It follows

=0.

) . 1
H\f(y) = | My f(x) Ee— dx|.
U“k ¢ D1 (V0o Vh—1,Xk) —1(y —x)

Recall that ye G,,\61. Moreover, if H, 4f(y)#0, then yo = z, ..., yk—1 = zx—1, and
Vi ¢6[a, f]. These assumptions give

/ Hf ()| dy
G\61

! 1
B M f—
M1 yie=0,...,mp—1 kae[%ﬁ i1 (20, Zk—1,Xk) 1 — rk(y — X)
Vi 6] |
1 M /()
- k
M1 V=0, .. my—1 Usepu Bt Goreeszimrxe)
Ve ¢6[a.f]
1 1
X - dx
(1 —1e(y —x) 1—rk(y—yek)>
< /()] dx
ka elaf) Ik+l (Zo,...,zk,l 1xk)
1 I B )
My (TR0 =0 T=ry=7e0)
Vi ¢ 6[o,f]
s¢ /()] dx = I f]],-

U%EM] Tie1(20, -, Zk-1,%k)

After then, let /€ L'(G,,), and 2> || ||, >0 arbitrary. Apply the Calderon-Zygmund
decomposition lemma (Lemma 2.2). That is,

o0
f=h+>_ % lhlle<Cih 1AL <ClflL,
j=1
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B;
supp i< | To(2,0) = 7, [;ﬁw:w (jeP),

I=0;

r=U s wp<clll

jeP
and the sets J; are disjoint (je[P). This, and the fact that the operator H; is of type
(L%, L?) imply that

1Hfolla _ 116115 _ AL Solls _ - 11
)< < < < .
p(Hfo>4) 7 SO s ms e

Let

= J 6.

jeP

It is obvious that u(6F) <6u(F)<C||f]|,;/4. Consequently, since the operator H; is
sublinear, then we have

p(H\f >27)

<u(Hfo>1) +u<H1 (i ) >2>

INAIT
<C™ V¢ 6F : ZHU’, ) >4
IPALR 1/ -
<C =
\ A Gn\6F z::
el ZHJ‘/Ill
VAR
<C Vi

This implies that the operator H; is of weak type (L', L'). This completes the proof
of Lemma 2.4. [

For any 1<jeN define the operator H; in the following way:

1) = swp (Mo [ ) ax|,

j<AeN 1 ey, 00 YA X Ay A1) - rA—j(J/ - x)
XA—jFVA—j

where y€ G,,. In Lemma 2.4 we proved that the operator H; is of weak type (L', L").
This will be generalized for the operators H;, where j>2. More exactly, we not only
prove that operators H; are of weak type (L!, L"), uniformly in j, we prove even
more. This will play a fundamental role in the proof of Theorem 2.1.
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Lemma 2.5. There exists an absolute constant C >0 such that for all jeN, f e L'(G,,),
and 1>0

2l

n(H > 7)< O

Proof. For j =1 this lemma is nothing else but Lemma 2.4. In the proof of Lemma
2.5 we will use Lemma 2.4. Apply a permutation for the coordinate groups of the
Vilenkin group G, such that for all 4>/, AeN the (4 —j)th coordinate group and
the (4 — 1)th coordinate group will be adjacent. Then Lemma 2.4 can be applied for
the modified Vilenkin group, and this will verify Lemma 2.5:

Hif (y)

Jj—1
< E sup
k=0 J<AeN
A=k mod j

-1
= Z Hi f(y)
=0

We prove the existence an absolute constant C >0 such that for all >0, feL'(G,),
and j, k the inequality

1
My f(x) ———————dx
! Li(V0s e Y Aj 1 XAV A1) - rA*j(y - x)

XA FV A

/11
22

holds. This inequality immediately gives

H(Hf ()
H(U Hiy f>~ })
k; H( ’kf>1>

jZ
<Clifih 2

This completes the proof of Lemma 2.5. Let

W(Hipf>4)<C

//\

H ) =supd | M [ F@)
M AA(Y0s VA1 XAy VA1)
A—j PV A
" 1
I —r4(y —x)

Since H/A;{f is monotone increasing as N gets larger, then by measure theory if we

dx

JSALSNj+k, A Ekmodj}.

prove that the operators 2 H} are of weak type (L', L'), uniformly in A’ (it means
that the constant C does not depend on N,j, k), then 2 H;, is also of weak type
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(L', L"). This would imply

(> 7) = w@ g > 22 <c L
Recall that the Vilenkin group Gy, is the complete direct product of its coordinate
groups Z,,, thatis, G,, = x;2,Z,,. We define another Vilenkin group. Its coordinate
groups will be the same, but with certain rearrangement. Let the function : N— N
be defined in the following way. If n>=k + Nj, or n#k,k — 1 mod, then

a(n) =n
and

ak+h)=k+{+1))j—-1, alk+{+1)j—1)=k+1,
for all /<N,leN. Then define the Vilenkin group G/* as:

'1k . o0
G = 1502’”“(”'

We give a measure preserving bijection between the two Vilenkin groups. We denote
it by a, or more precisely (if it is needed) by o; ;. It will not cause any confusion. That
s,

. j ke
ox= ok G G

and let the nth coordinate of the sequence o;(x) € GI* be Xy(n)- That is,

(@(x))y = Xam)  (n€N).

Consequently, we have a finite permutation of the coordinates. This is very
important for us, since when we discuss the operator H; on the Vilenkin group G/,
then we can apply the result given (H, is of weak type (L', L")) for the operator Hﬁc
on the Vilenkin group G,,.

Denote by 7t the sequence for which i = m,(;). Introduce the notations X :=

u(x)(x€Gp), 1 = ry)(l€N). Recall that 4 = kmodj. Then we have

Ya-j— XA—./)

1—ry_i(y—x)=1—exp|2m
A/(J’ ) P( ma;

_ 1__exp(2n[VAl-'xA1>

mA_j
=1—exp (anyA_l~_ xA_l)

my—1
=1—F (- %)

Moreover, denote by M the sequence of the generalized powers with respect to the
sequence #i. This gives

Wy ... 1042

=My
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= moym, ...mA_j_lmA__/H oMy

my...my_q

my—;
My jMg—jy1...My|
=M,

my—_;j

= MA,ij,jJr] My,

This gives M4, <M,_1/2~". By the above written we get

1
MA,j/ f(x)—————dx
UX/H#/H L4(Yo,-e Va1, XA 5oV A1) - VA—](y - x)
i [ R R
= i X)) = = aX
’ LGodaaian) L= Faa (F—X)

X4-17T4-1
1 5o
< 51 H\f(7),
where the function fis defined on G/* by f(x) = f(%) for all x€ G,,. The definition of
H)). gives

HYS0) <5 Hf(D).

By Lemma 2.4 it follows
p({yeGu : HYf (y)>7})

<u{FeGll - (HHG)>2'))

I/
< -
o

11l
=Cch L
)2

The operator H]’\f( is monotone increasing in N. Consequently, we have

w(Hjf >2)

—u<U{H,%f>A}>

neN

— i N
= Jim u(Hjyf >7)

1

11l
<C—7.
¢ A

This, as we said before, gives the inequality u(H;f > 1) < C* _%H'. That is, the proof of
Lemma 2.5 is complete. [
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The last lemma we need in order to prove Theorem 2.1.

Lemma 2.6. Let A>t, t,AeN, zel\l,,\. Then
0 if z—zie ¢ 1y,

Ky, (z) = M .
MA( ) 1_7”[[(2) 1fz—z,e,€],4.

Proof. Observe that
MA KMA (Z)

My
= Di(2)
k=1
My 1—1 m,—1 ]
= (2 (Z My + M, ) Vi(Z))
k=1

j=0 i=m;—k,
= J1 + />
We remind the reader that k = ) k;M;, and Dy, (z) = 0. First, we prove that J; = 0.

m;—1

moy—1 m_1—1 my—1 my_1—
P DD IED D 5y Hr"’ ZkMZ @)=0,

0=0 kio1=0  ki1=0 k4-1=0 =
l?ﬁt

because Y ;' "o 7¥(z) = 0. We recall that ze I\, ;. Since

mo—1 my_1—1 my—1 my 1—1 [ A-1 A—1 [m—1
SIS e :H(z e >)

0=0 ki1=0  k;1=0 kq1=0\ =0 =0 \ k;=0
1# 1#t

then if z — z,e, ¢ 14, then we also have J, = 0. That is, Ky, (z) = 0 in this case. On the
other hand, if z — z,e,€1y, then

MAKMA (Z)
my—1 m;—1 )

=M, H my rk’ Z r(z)

1=0 k=0 i=m;—k,

I#1

M m;—1 m;—1 )
=M,—5 > =) Y )

m

L f=0 i=m,—k,

_MtMA m;—1 rt ( )_1
me =g () =1
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Since
m;—1 ri{, (Z)
= r(z) =1

then we have

:0’

1

M4K =MMy——.
4K, (2) AT

This completes the proof of Lemma 2.6. O

Proof of Theorem 2.1. With some easy calculations we get

loa,f (V)]
/f VK, (v — x) dx

< S () K, (y = x) dx| +

A-1
3 / F() Koty (v — x) dx
1=0 Li(y) \Li+1(»)

L4(»)

<M, / /()] dx
L4(y)

A—1

+ Z

<|/I'y +ZHJ

1
M, f(x) ———dx
U., ., 100 pimt Xyt ya) L=r(y—x)

We recall that for zel we have K, (z) = K, (0) = 31 LS Mas Yk = Ma—l That is,
for the maximal operator ¢* := sup, |os,| we have

af<|fI+Y Hf
J=1

This by Lemma 2.5 immediately gives for all fe L'(G,,), and 1> 0:
(6*f>2)< |f|*>% + in>%
u U 2 u S - 2

S%—%u([jl {ij>%})
A - #<Hﬂ,> )

J=1
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Cllfll | ~= Gl
S +}; 2

CllAL
)

This proves that the operator ¢* is of weak type (L', L'). Finally, let f € L'(G,,), and
&> 0. Since the set of Vilenkin polynomials (the finite linear combinations of Vilenkin
functions) is dense in the space L'(G,,), then for each §>0 there exists a Vilenkin
polynomial P, such that || f — P||, <d. Since the relation

<

lim O'MAP =P
A—
holds everywhere, then we have

u(lim suplou,f — f | >¢)
<u(timsuplow, (f = P)|>3) + (1P ~1 1>5)

C
<=l -,

Co
<—.
€

Since ¢6>0 is arbitrary, then it follows
ulim suplay,f — £ |>¢) = 0

for all £>0. Consequently,
u(lim suploar,f — 1> 0) =0,

that is, 0,7,/ —f almost everywhere. The proof of Theorem 2.1 is complete. [J
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